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A Nontresonant Perturbation Theory
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Abstract—This paper presents a theory for a nonresonant per~
turbation technique for the measurement of electric and magnetic
field strengths within a device. Most presently employed perturba-~
tion field strength measurements require the use of a resomance
technique. In the technique discussed here, reflection coefficient
measurements are made at the same frequency with, and without, a
perturbing object placed at the point at which the field strength is to
be measured. By these data, and by the equations derived and
presented in this paper, the desired field strength can be calculated.

The technique can be used for cavities that are too lossy to sup-
port resonance, and is suitable for cavities for which the resonant
field configuration differs from the field configuration to be measured.
In addition, this technique has the advantage that it permits the

measurement of the phase, as well as the amplitude of the field,
P decades for the measurement of electromagnetic

waves within devices. As early as 1937 Harries
[1] found the electric field direction by a resonance
perturbation technique. In 1952 Maier and Slater [2]
presented the well-used resonance perturbation method
for measurement of field strength. By this technique,
the frequency perturbation of a resonator by a dielectric
or conducting object is used to obtain the field.

In some cases, however, electric field measurements
are desired in devices in which resonance cannot be em-
ployed. The device may be too lossy to support reso-
nance. Alternatively, one may wish to know the field
strength in the device under nonresonant conditions of
operation; the corresponding field strengthsin the device
when in resonance may be considerably different.

For these reasons, a number of papers on nonresonant
perturbation techniques have been presented and em-
ployed within the last few years. The nonresonant tech-
niques are characterized by the fact that the frequency
at which the measurements are made remains fixed.
That is, this frequency is independent of movement of
the perturbing object within the device, as well as its
removal from the device. Generally, the nonresonant
techniques fall into two categories: 1) those in which the
reflection coefficient at an input port is measured, and
2) those in which the device is treated as a two-port, for

which the transmission coefficient is measured.
In the 1955 Kino [3] presented a theory for a tech-

INTRODUCTION
ERTURBATION techniques have been used for

Manuscript received April 13, 1964 ; revised October 4, 1965. The
work reported in this paper was supported by the U. S. Atomic
Energy Commission.

The author is with the Ames Research Center, Moffett Field,
Calif. He was formerly with the Stanford Linear Accelerator Center,
Stanford University, Stanford, Calif.

70

nique of the latter type. This theory was for use in uni-
form and periodically-loaded waveguides. Specifically,
he calculated the change in propagation constant of the
device in terms of the field strength and the parameters
of the perturbing object. In 1957 Lagerstrom [4] pre-
sented a similar theory, again for transmission coefficient
measurement, as well as the results of measurements he
had performed on periodically-loaded waveguides.

In the past three years, considerable interest and ac-
tivity have been devoted to nonresonant perturbation
measurements in which the input reflection coefficient
of the device is measured. Measurements have been
made not only on periodically-loaded transmission lines
but also on devices having a wide variety of sizes and
shapes. In 1938, at the Stanford University Micro-
wave Laboratory, K. Mallory and R. Miller measured
the electric field on-axis in a periodically-loaded wave-
guide in this manner. More recently this technique has
been used by R. Borghi to measure the electric field on-
axis in sections of accelerator waveguide, and in a vari-
ety of other components for the Stanford two-mile linear
accelerator. Mallory [5] presented a nonresonant tech-
nique of this type in 1961. This paper supplements the
Mallory presentation by providing a more rigorous justi-
fication for the measurement technique. The principal
value of this paper is that it provides a rigorous, general
theory for measurements of this type.

This paper provides a theory for a nonresonant per-
turbation technique for measuring the electric and mag-
netic fields at various points within a device. It is
adapted specifically to a steady-state field with a sinu-
soidal time variation. Its value will be found primarily
in microwave devices. The device can be a transmission
line, waveguide, or, in fact, any object that has the
following properties.

1) Basically, the device consists of a cavity that con-
tains an electromagnetic field. (See Fig. 1.)

2) Electromagnetic power is permitted to enter the
cavity only at a single port while perturbation measure-
ments are being made. (This is the port at which re-
flection coefficient measurements are made.)

3) Asingle TE, TM, or TEM mode is present in that
part of the input waveguide where reflection coefficient
measurements are made.

4) The walls of the cavity provide a very high degree
of isolation between its interior and its exterior for elec-
tromagnetic waves at the operating frequency. (In most
practical cases these walls are made of highly conducting
metals.)



STEELE: NONRESONANT PERTURBATION THEORY 71

SURFACE S OUTPUT PORT

INPUT PORT LOAD

0

N

7
i .

PERTURBING
OBJECT

Fig. 1. Cavity in which fields are to be measured.

5) The cavity walls and the medium inside the cavity
are assumed to have electrical parameters that are linear
and isotropic.

Basic Taeory

Figure 1 shows a cross-sectional view of the cavity.
It has just one waveguide (or transmission line) port
through which electromagnetic energy is permitted to
pass into its interior. It can have any size or shape. The
cavity can be either lossy (in its walls, its interior, or
both) or lossless.

The cavity, as defined in the introduction and in the
theoretical development to be given, is considered to in-
clude any output waveguides that the device might
have, as well as the loads to which they connect. This
concept is illustrated with one output waveguide and
load in Fig. 1.

Consider now the region R, of volume V, inside the
closed surface S in Fig. 1. As shown, the surface S lies
entirely within the cavity walls, except where it crosses
the input waveguide in a plane normal to the waveguide
axis.

The basic formulation for this theory is similar to the
Lorentz Reciprocity Theorem [6] and to the theory de-
veloped by Jaynes [7] to calculate the change in the
input impedance of a cavity when it is modified. Two
different electromagnetic fields are considered within
region R. One field, in the absence of a perturbing ob-
ject, is designated by the electric and magnetic field
components E, and H,, respectively. The other field, in
the presence of a perturbing object within region R, is
designated by the electric and magnetic field compo-
nents E, and H,, respectively. These two fields have the
same frequency. We employ the vector p defined by

p=E XH,— E,XH, (1)

throughout region R and over the surface S. The first
step in the derivation is to relate p over the surface S
to p throughout wvolume V by the divergence
theorem [8],

mem=ﬁwmw @)

where n is the unit vector, normally outward from sur-
face S. In (2) the integral on the left is over the entire
closed surface S, and the integral on the right is through-
out all of the volume 17, contained in region R. In the
paragraphs to follow, the integrals in (2) are developed
into forms suitable for use in perturbation measurement.

Consider first the integral on the left of (2). Suppose
that surface S consists entirely of two parts: Sy, the part
that crosses the waveguide input port; and Ss, the part
contained within the cavity wall. We assume that the
cavity wall attenuates electromagnetic waves so effec-
tively that, over surface S» (which lies between the inner
and outer cavity walls),

E.=H, =E,=H,=p=0.

Thus
[ apris = [ (npyas )
8 st
Now over surface .Sy, using (1),
np=n-(E, X Hy) —n-(E, X H,)
n'p={nXE)H,—(nXE,)H,
np=(nXE) Hu— (nXE)He  (4)

In (4), the subscript s denotes those components ol the
fields that lie in the plane surface ;. Suppose now that
over Si, E, and H, are composed entirely of a single
waveguide mode, and that E, and H, are composed en-
tirely of the same waveguide mode. At each point on S,
then, E., and E,, must lie in the same direction, and
H,, and H,, must lie in the same direction. In a single
waveguide mode, the components of E and H that lie in
a cross-sectional plane must be perpendicular to each
other. In (4), the vectors (nXE,;) and (nXE,;) are
perpendicular to E.; and E,,, but are parallel to H,; and
H,,. Thus, (4) becomes

n-p = EpsHas - EusHps (5)

where Eq, Hgs, Epe, and H,, are all scalars. In general,
these fields contain incident and reflected waves within
the waveguide, and can be expressed as

Eu = (1 + TW)E., (6)
Hos = (1 — T'o)Huss )
Ep = (1 + I'p)Eps: (8)
Hp = (1 — T))Hyps, ©

where T', and I', are the reflection coefficients at .S
(the input port) in the absence of the perturbing object
and in its presence, respectively, In these equations, the
subscript z denotes the incident wave. When (5) is com-
bined with (6) through (9), and one notes that

Epsi Easi
Hpsi Hasi
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the result is

n-p = (Fp - I‘a)(Easszsi + EpsiHaSL)- (10)

The field components in (10) are all taken to have phase
angles of zero over the reference plane S;. This causes
no loss in generality.

From Poynting’s Theorem [9], and the fact that the
E- and H-field components in (10) are perpendicular to
each other, it is apparent that

(Easinsi + EpSLHasi) ds = 2'\/Paz'Ppi-

8

(11)

In (11) P,, and P,, are the power levels in the incident
waves that pass through Sy, in the absence of, and in the
presence of, the perturbing object, respectively. When
(3), (10), and (11) are combined, the result is

[ pyas =2 rir o, ~ 1),
8

and since, in common practice, the incident wave power
levels are equal in the presence and absence of the per-
turbing object, P,,= Pp;=FP;and

f(n-p)ds = 2P.(Tp, — T). (12)

Consider now the term on the right of (2). From (1)
V-p = V'(Ea X Hp) - V'(Ep X Ha)’
which by means of a vector identity becomes

Vep = (VX Ea)'H:H—— (VXHP)'Ea“ <VX EP)

‘H, + (VX H,)- E,. (13)
When Maxwell’s Equations, given by
VX E= — juuH
and
VX H =i, + jueE = i, + ig = i
are substituted into (13), it becomes
Vop = — jolua — pp)Hy Hy + Epite — Eoodip  (14)

where i,, i3, and i, are the conduction, displacement,
and total current densities, respectively,

By the Lorentz Reciprocity Theorem one can see that
in the region R outside the perturbing object

Vep =0,

since at every such point the conductivity, permittivity,
and permeability are the same with and without the
perturbing object. As a result

fV(V-p)dv =fv (V- p)dv

(15)

FEBRUARY

where V is the volume throughout region R, and 7, is
only the vofume occupied by the perturbing object.

When (2), (12), (14), and (15) are combined, the
result is

2P(T, — T\)

[ Byt = Buviy — jolu — w) B H)db. (16)
VP
ExprEssION IN TERMS OF ELECTRIC AND
MaGNETIC DIPOLE MOMENTS

If the perturbing object is quite small compared to a
wavelength, its scattered field consists entirely of the
radiation from an electric dipole moment and a mag-
netic dipole moment. For such an object, the right side of
(16) can be replaced by an expression in terms of these
dipole moments, as shown in the following.

The first step in this derivation is to show that the
input reflection coefficient change caused by the per-
turbing object depends upon the electric and magnetic
dipole moments that it sets up, but is otherwise com-
pletely independent of its properties. Combining (3),
(5), and (12) yields

2P(Ty — To) = | (EpeHos — EusHys) ds. (an
8y
Now, let Ea, and Ha, be the components of the electric
and magnetic fields scattered by the perturbing object,
that lie in the input plane S; that crosses the input
waveguide. Then

Epe =
H, =

EAS + Eas
HAs + Has:

and when these equations are substituted into (17) the
result is

2P1(Pp - I‘a) = (EAsHas - EasHAs) ds.

81

(18)

In turn, one can express Ea, and H,, in terms of the
electric and magnetic dipole moments set up by the
perturbing object, P and M, by

EAs = ClP + CgM
HAs == CsP + C4M

(19)
(20)
In (19) and (20) the vectors C,, C,, Cs, and C,represent
the coupling between the dipole moments and the field

components in the plane S; (see Fig. 1).

When (18), (19), and (20) are combined, the result is
2P(Tp —T,) = kiP+ ks M (21)

where

ki = f (Hascl - Ewcs) ds (22)
S



1966

and

ky = f (H.sCy: — FE.Cy) ds. (23)
s

Equations (22) and (23) show that k; and k. are com-
pletely independent of the perturbing object. It is ap-
parent then from (21) that the reflection coefficient
change depends upon the properties (size, shape, com-
position, etc.) of the perturbing object only to the extent
that they affect its electric and magnetic dipole
moments,

To evaluate ki, we chose a perturbing object that con-
sists of two identical balls, separated from each other
and connected by a very thin wire, all perfectly con-
ducting. The separation between the balls is quite large
compared to their radii. Since the device is perfectly
conducting, the electric and magnetic fields in its pres-
ence, E, and H,, are zero inside it, with the result that
(16) becomes

2Py, — Ty) = — f (E,+1;p) dv. (24)
Vyp

Since E, is considered uniform throughout the space to

be occupied by the perturbing object, (24) becomes
2P(T,—T,) = — E,: ipdv= — E,-(I,]) (25)

Vo

where I;, is the total current that flows along the wire,

and Iis a vector whose direction is that of the perturbing

object and whose magnitude is its length. If Q is the

charge on one of the balls, then

Il = jwQl
and since
P =0l
then
1,1 = jwP. (26)
Combining (25) and (26) yields
2P, = T) = — Eu (juP). 27

Since this dipole, acting under the electric field, produces
zero magnetic moment, it is evident by comparing (21)
and (27) that

(28)

To evaluate ks, we chose a perturbing object that
consists of a circular wire ring, again perfectly conduct-
ing, with the result that (24) again applies. By taking
the total current in the ring to be 7., and assuming it to
be constant around the ring, (24) becomes

kl = —-wau.

2P(T, — T,) = — Ihf E.-dl (29)
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The magnetic flux @ that threads the loop is given by
b = Au,H, n

where n is a unit vector normal to the plane of the loop,
and A4 is its enclosed area. Therefore,

fEa-d = — jwd = — jou,AH, n. (30)

By combining (29) and (30), one obtains
2P(T, — T.) = jop iy, AH, n

and since the magnetic dipole moment M is given by

M = [;,A4n,
then
2P(Ty — Ty) = jop M- H,. (31)
Comparison of (21) and (31) shows that
ke = jonoH,. (32)

The values of k; and ks shown in (28) and (32) are
completely independent of the perturbing object. When
these values are substituted into (21) the result is

2P(T, — T) = — jw|E, P — pH, M].  (33)

EXPRESSION IN TERMS OF POLARIZABILITY

The concept of polarizability [10] can be applied to
a certain class of perturbing objects. Such objects have
the property that if one is placed in a sinusoidally vary-
ing electric field, it sets up an electric dipole moment,
but no magnetic dipole moment. Conversely, if it is
placed in a sinusoidally varying magnetic field, it sets up
a magnetic dipole moment, but no electric dipole mo-
ment. Perturbing objects used in practical field strength
measurements usually have this property. There are
two advantages to the use of the polarizability concept
in connection with perturbation field strength measure-
ments. First, the formulation (to be developed later) is
more readily useable than either (16) or (33). Second,
it permits the use of existing formulas for the polariz-
abilities of variety of perturbing objects of different
shapes [11].

The electric and magnetic dipole moments can be
expressed by

P = e[ae]'Ea
M= [am]'Ha

where o3 and a, are tensor polarizabilities. When these
equations are substituted into (33), the result is

2P,(T, — T4)
= jw[eu(Eu‘ [ae]) -E, — (,uaHa' [a/n]) ’ HM] (;4)
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In practice, it is much easier to use scalar polarizabili-
ties than tensor polarizabilities. This can be done with
a class of perturbing objects having an additional re-
striction. These are objects that have rotational sym-
metry about an axis, symmetry about a plane normal
to the axis, and electric and magnetic polarizabilities
that are scalar in the direction of the axis, and in the
direction normal to the axis. A polarizability is scalar if
the electric or magnetic field causes a corresponding di-
pole moment that is collinear to the field. For such a
perturbing object one can show easily that (34) reduces
to

2P(Ty — To) = — joleacks® — panH.?] 35)

where

(36)

(37)
In (36) and (37), 8, and 8., are the angles between the

axis of the perturbing object and the impressed electric

and magnetic fields, respectively. The terms o, tn,

Omp, and ams, are the scalar polarizabilities, with «., and

amp taken parallel to the axis of the perturbing object,
and .., and o, taken normal to that axis.

Qe = Qp €08 M, + an sin? b,

Qm = Omp COS? Oy F i, 8102 B,

CoMPARISON WITH SLATER RESONANT THEORY

Maier and Slater [2] derived formulas that show
resonant frequency change resulting from the use of
conducting oblate and prolate spheroids as perturbing
objects. These formulas show this frequency change as
a function of the size and shape of each of these objects
for electric and magnetic fields parallel to and normal
to its axis. Maier and Slater also provide a set of curves
calculated from these formulas. Each curve shows how
the frequency change varies with shape of the spheroid,
when it perturbs either the electric or magnetic field
either parallel to, or normal to, the spheroid axis.
Ginzton [12] repeats both the formulas and curves of
Maier and Slater.

Using the formulas presented previously, one can cal-
culate the change in reflection coefhicient that results
when a conducting oblate or prolate spheroid is used as
a perturbing object in the nonresonant technique. For
any combination of electric or magnetic fields, at the
point of perturbation, one can make this calculation in
either of two ways. First, one can calculate directly
using (16). The other, and much easier way, is to use
(35), (36), (37) and for the polarizabilities cep, G, Xmps

and a., to use the polarizability formulas given by
Collin {11]. Either way one finds that the quantity
(I',—7T,) for the nonresonant technique varies linearly
with the quantity

for the Slater resonant technique, with changes in the
size and shape of the perturbing object, and changes in
the directions and magnitudes of the electric and mag-
netic fields at the point of perturbation. This, of course,
is to be expected. As a result, the Maier and Slater
curves for conducting oblate and prolate spheroids apply
equally well to the nonresonant perturbation technique.

Note: The experimental applications of this author’s
theory are discussed in the Correspondence section of
this issue by K. B. Mallory and R. H. Miller, “On Non-
resonant Perturbation Measurements.”
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