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A Nonresonant

CHARLES W.

Abstract—This paper presents a theory for a nonresonant per-

turbation technique for the measurement of electilc and magnetic
field strengths within a device. Most presently employed perturba-

tion field strength measurements require the use of a resonance
technique. In the technique discussed here, reflection coefficient
measurements are made at the same frequency with, and without, a
perturbing object placed at the point at which the field strength is to

be measured. By these data, and by the equations derived and
presented in thk paper, the desired field strength can be calculated.

The technique can be used for cavities that are too Iossy to sup-

port resonance, and is suitable for cavities for which the resonant
field configuration differs from the field configuration to be measured.
In addition, this tectilque has the advantage that it permits the

measurement of the phase, as well as the amplitude of the field.

INTRODUCTION

P

ERTURBATION techniques have been used for

decades for the measurement of electromagnetic

waves within devices. As early as 1937 Harries

[I] found the electric field direction by a resonance

perturbation technique. In 1952 Maier and Slater [2]

presented the well-used resonance perturbation method

for measurement of field strength, By this technique,

the frequency perturbation of a resonator by a dielectric

or conducting object is used to obtain the field.

ln some cases, however, electric field measurements

are desired in devices in which resonance cannot be em-

ployed. The device may be too lossy to support reso-

nance. Alternatively, one may wish to know the field

strength in the device under nonresonant conditions of

operation; the corresponding field strengths in the device

when in resonance may be considerably different.

For these reasons, a number of papers on nonresonant

perturbation techniques have been presented and em-

ployed within the last few years. The nonresonant tech-

niques are characterized by the fact that the frequency

at which the measurements are made remains fixed.

That is, this frequency is independent of movement of

the perturbing object within the device, as well as its

removal from the device, Generally, the nonresonant

techniques fall into two categories: 1) those in which the

reflection coefficient at an input port is measured, and

2) those in which the device is treated as a two-port, for

~%,hich the transmission coefficient is measured.

In the 1955 Kino [3] presented a theory for a tech-
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nique of the latter type. This

form and periodically-loaded

theory was for use in uni-

waveguides. Specifically,

he calculated the change in propagation constant of the

device in terms of the field strength and the parameters

of the perturbing object. In 1957 Lagerstrom [4] pre-

sented a similar theory, again for transmission coefficient

measurement, as well as the results of measurements he

had performed on periodically-loaded waveguides.

In the past three years, considerable interest and ac-

tivity have been devoted to nonresonant perturbation

measurements in which the input reflection coefficient

of the device is measured. Measurements have been

made not only on periodically-loaded transmission lines

but also on devices having a wide variety of sizes and

shapes. In 1958, at the Stanford University Micro-

wave Laboratory, K. Mallory and R. Miller measured

the electric field on-axis in a periodically-loaded wave-

guide in this manner. More recently this technique has

been used by R. Borghi to measure the electric field on-

axis in sections of accelerator waveguide, and in a vari-

ety of other components for the Stanford two-mile linear

accelerator. Mallory [5] presented a nonresonant tech-

nique of this type in 1961. This paper supplements the

Mallory presentation by providing a more rigorous j usti-

fication for the measurement technique. The principal

value of this paper is that it provides a rigorous, general

theory for measurements of this type.

This paper provides a theory for a nonresonant per-

turbation technique for measuring the electric and mag-

netic fields at various points within a device. It is

adapted specifically to a steady-state field with a sinu-

soidal time variation. Its value will be found primarily

in microwave devices. The device can be a transmission

line, waveguide, or, in fact, any object that has the

following properties.

1) Basically, the device consists of a cavity that con-

tains an electromagnetic field. (See Fig. 1.)

2) Electromagnetic power is permitted to enter the

cavity only at a single port while perturbation measure-

ments are being made. (This is the port at which re-

flection coefficient measurements are made,)

3) A single TE, TM, or TEM mode is present in that

part of the input waveguide where reflection coefficient

measurements are made.

4) The walls of the cavity provide a very high degree

of isolation between its interior and its exterior for elec-

tromagnetic waves at the operating frequency. (In most

practical cases these walls are made of highly conducting

metals.)

70



STEELE: NONRESONANT PERTURBATION THEORY 71

‘“’FACE‘> /
OUTPUT PORT

AO

‘PERTURBING
OBJECT

Fig. 1. h’ h fields are to be measured.(Cavity in w lC

5) The cavity walls and the medium inside the cavity

are assumed to, have electrical parameters that are linear

and isotropic.

BASIC THEORY

Figure 1 shows a cross-sectional view of the cavity.

It has just one waveguide (or transmission line) port

through which electromagnetic energy is permitted to

pass into its interior. It can have any size or shape. The

cavity can be either lossy (in its walls, its interior, or

both) or lossless.

The cavity, as defined in the introduction and in the

theoretical development to be given, is considered to in-

clude any outlput waveguides that the device might

have, as well a.s the loads to which they connect. This

concept is illustrated with one output waveguide and

load in Fig. 1.

Consider now the region R, of volume V, inside the

closed surface S in Fig. 1. As shown, the surface S lies

entirely within the cavity walls, except where i t crosses

the input waveguide in a plane normal to the waveguide

axis.

The basic formulation for this theory is similar to the

Lorentz Reciprocity Theorem [6] and to the theory de-

veloped by Jaynes [7] to calculate the change in the

input impedance of a cavity when it is modified. TWO

different electromagnetic fields are considered within

region R. One field, in the absence of a perturbing ob-

ject, is designated by the electric and magnetic field

components E. and Ha, respective y. The other field, in

the presence of a perturbing object within region R, is

designated by the electric and magnetic field compo-

nents EP and HP, respectively. These two fields have the

same frequency. We employ the vector p defined by

throughout region R and over the surface S. The first

step in the derivation is to relate p over the surface S

to p throughout volume V by the divergence

theorem [8],

s J(n.p)ds = (V.p)dv (2)
$s v

where n is the unit vector, normally outward from sur-

face S, In (2) the integral on the left is over the entire

closed surface S, and the integral on the right is through-

out all of the volume J’, contained in region R. ln the

paragraphs to follow, the integrals in (2) are developed

into forms suitable for use in perturbation measurement.

Consider first the integral on the left (of (2). Suppose

that surface S consists entirely of two parts: S1, the part

that crosses the waveguide input port; and S2, the part

contained within the cavity wall. We assume that the

cavity wall attenuates electromagnetic waves so (effec-

tively that, over surface Sz (~~hich lies between the inner

and outer cavity walls),

Ea=Ha=EP =HP=p=O,

Thus

s(n.p)ds = s(n.p)ds.
s SI

(3)

IVow over surface S,, using (1),

n.p=n. (Eax HP)–n. (EPX Ha)

n“p = (n XE~). H@– (nX EP)Hti

n“p = (n X E..) HP, – (r-r X EP.). H... (4)

In (4), the subscript s denotes those components 0[ the

fields that lie in the plane surface S1. Suppose now that

over S1, E. and H. are composed entirely of a s’ingle

waveguide mode, and that En and HP are composed en-

tirely of the same waveguide mode. At each point OItIS1,

then, E.. and E,,, must lie in the same direction, and

H., and HP,, must lie in the same direction. In a single

waveguide mode, the components of E and H that lie in

a cross-sectional plane must be perpend icullar to each

other. In (4), the vectors (n X E.,) and (n x EP.) are

perpendicular to Ea., and EP,, but are parallel to Ha, and

Hp,. Thus, (4) becomes

where E.,, H.,, E,,, and HP8 are all scalars. In general,

these fields contain incident and reflected waves wi~-hin

the waveguide, and can be expressed as

E., = (1+ I’.)E.,, (6)

ED, = (1 + 17P)ED8, (8)

Hz. = (1 – 17JHP., (9)

where 17a and r~ are the reflection coefficients at SI

(the input port) in the absence of the perturbing object

and in its presence, respectively, In these equations, the

subscript i denotes the incident wave. When (5) is com-

bined with (6) through (9), and one notes that
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the result is

n p = (r. – ra)(~.,t~p.i + E,JT.8L). (lo)

The field components in (10) are all taken to have phase

angles of zero over the reference plane S1. This causes

no loss in generality.

From Poynting’s Theorem [9], and the fact that the

E- and H-field components in (10) are perpendicular to

each other, it is aPparent that

s
(&HP,i + Ep,&.,,) ds = 2dp.,ppi. (11)

/sl

In (11) P.z and P,, are the power levels in the incident

waves that pass through S1, in the absence of, and in the

presence of, the perturbing object, respectively. When

(3), (10), and (11) are combined, the result is

J (n p) ds = 2~PaiPPj (FP – I’a),
s

and since, in common practice, the incident wave power

levels are equal in the presence and absence of the per-

turbing object, Pa, = PP~ =P~ and

J(np)ds=2P,(r@ – r.). (12)
s

Consider now the term on the right of (2), From (1)

V.p = V.(E. XHP) – V.(E, XH.),

~vhich by means of a vector identity becomes

Y.p=(vx Ea). Hp–(vx Hp). Ea–(vx Ep)

.Ha + (V X Ha). E,. (13)

When Maxwell’s Equations, given by

Vx l?= – jw/.LH

and

VXH=i.+~ueE=iG~id= it

are substituted into (13), it becomes

Vp = — jco(pa — I.LP)Ha.H1 + Ep.it.— Ea.itp (14)

where i,, id, and if are the conduction, displacement,

and total current densities, respectively.

By the Lorentz Reciprocity Theorem one can see that

in the region R outside the perturbing object

V.p = o,

since at every such point the conductivity, permittivity,

and permeability are the same with and without the

perturbing object. As a result

f
(V.p)dv = s(Vp)du (15)

v VP

where V is the volume throughout region l?, and V2 is

only the volume occupied by the perturbing object.

When (2), (12), (14), and (15) are combined, the

result is

2p,(r, – r.)

.

s
(EP.it~ – E~”itp – ~o(P~ – I.JP)H..H,)dzJ. (16)

Vp

EXPRESSION IN TERMS OF ELECTRIC AND

MAGNETIC DIPOLE MOMENTS

If the perturbing object is quite small compared to a

wavelength, its scattered field consists entirely of the

radiation from an electric dipole moment and a mag-

netic dipole moment. For such an object, the right side of

(16) can be replaced by an expression in terms of these

dipole moments, as shown in the following.

The first step in this derivation is to show that the

input reflection coefficient change caused by the per-

turbing object depends upon the electric and magnetic

dipole moments that it sets up, but is otherwise com-

pletely independent of its properties. Combining (3),

(5), and (12) yields

2Pi(rp – r.) =
s

(EPJ7., – E.,17P,) ds. (17)
SI

Now, let EA. and ~& be the components of the electric

and magnetic fields scattered by the perturbing object,

that lie in the input plane S1 that crosses the input

waveguide. Then

E,. = E~, + Em,

H., = HA, + H.,,

and when these equations are substituted into (17) the

result is

2p,(rD – r.) =
J

(EA,Ha, – E.,HA.) ds. (18)
s~

In turn, one can express EA. and HA, in terms of the

electric and magnetic dipole moments set up by the

perturbing object, P and M, by

EL. = CI. P+ CZ. M (19)

HA, = C3CP+ Cd. M. (20)

In (19) and (20) the vectors Cl, C,, C,, and C, represent

the coupling between the dipole moments and the field

components in the plane SI (see Fig. 1).

When (18), (19), and (20) are combined, the result is

2P, (I’P — I’.) = kl. P+ kz. M (21)

where

k, = s(Ha,C1 – E,,, C,) ds (22)
s
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Sk, = (Ha,C, – Ea,C,) ds.
s

(23)

Equations (22) and (23) show that kl and k, are com-

pletely independent of the perturbing object. It is ap-

parent then from (21) that the reflection coefficient

change dependls upon the properties (size, shape, com-

position, etc.) of the perturbing object only to the extent

that they affect its electric and magnetic dipole

moments.

To evaluate kl, we chose a perturbing object that con-

sists of two identical balls, separated from each other

and connected by a very thin wire, all perfectly con-

ducting. The separation between the balls is quite large

compared to their radii. Since the device is perfectly

conducting, the electric and magnetic fields in its pres-

ence, EP and hrP, are zero inside it, with the result that

(16) becomes

2Pi(rfl – r.) = – s(Ea .i,o) dv. (24)
VP

Since Ea k considered uniform throughout the space to

be occupied by the perturbing object, (24) becomes

2p,(rp – r.) = – E..
J

itg dv = – E. “ (1,],0 (25)
T’p

where l~P is the total current that flows along the wire,

and 1 is a vector whose direction is that of the perturbing

object and whose magnitude is its length. If Q is the

charge on one of the balls, then

ItPl = jmQl

and since

P = Ql,

then

I,pl = jwP. (26)

Combining (25) and (26) yields

2Jpt(rp – r.) = – E. ~(j(.oP). (27)

Since this dipole, acting under the electric field, produces

zero magnetic moment, it is evident by comparing (21)

and (27) that

kl = – jwE,,. (28)

To evaluate k%, we chose a perturbing object that

consists of a circular wire ring, again perfectly conduct-

ing, with the result that (24) again applies. By taking

the total current in the ring to be 1~~, and assuming it to

be constant around the ring, (24) becomes

$“
2Pi(rp – r.) = – It. Ea ~dl. (29)

The magnetic flux @ that threads the lclop is given by

@ = ApaHa.n

where n is a unit vector normal to the plane of the loop,

and A is its enclosed area. Therefore,

$
Ea. dl = – iti+ = – jJJpaA~la.n. (30)

By combining (29) and (30), one obtains

and since the magnetic dipole moment M k given by

M = ItPAn,

then

2P~(rP – I’.) = jqJ.iM. H.. (31)

Comparison of (21) and (31) shows that

k2 = j_qJaHa. (32)

The values of k, and kz shown in (28)I and (32) are

completely independent of the perturbing object. When

these values are substituted into (21) the result is

2P@fl – r.) == – jJ[Ea” P – I.&T. oM]. (33)

EXPRESSION IN TERMS OF POLARIZABILITY

The concept of polarizability [10] can be applied to

a certain class of perturbing objects. Such objects hal-e

the property that if one is placed in a sinusoidally vary-

ing electric field, it sets up an electric dipole moment,

but no magnetic dipole moment. Conversely, if i t is

placed in a sinusoidally varying magnetic field, it sets up

a magnetic dipole moment, but no electric dipole mo-

ment. Perturbing objects used in practical field strenlgth

measurements usually have this property. There are

two advantages to the use of the polarizabili ty concept

in connection with perturbation field strength measure-

ments. First, the formulation (to be developed later) is

more readily useable than either (16) or (33). Seccmd,

it permits the use of existing formulas for the polariz-

abilities of variety of perturbing objects of different

shapes [11 ].

The electric and magnetic dipole moments can be

expressed by

M = [a.] “H.

where aa and am are tensor polarizabilities. When thlese

equations are substituted into (33), the result is
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In practice, it is much easier to use scalar polarizabili-

ties than tensor polarizabilities. This can be done with

a class of perturbing objects having an additional re-

striction. These are objects that have rotational sym-

metry about an axis, symmetry about a plane normal

to the axis, and electric and magnetic polarizabilities

that are scalar in the direction of the axis, and in the

direction normal to the axis, A polarizability is scalar if

the electric or magnetic field causes a corresponding di-

pole moment that is collinear to the field. For such a

perturbing object one can show easily that (34) reduces

to

2~i(rP – r.) = – jm [Ca.Ea~ – ~amH.z] (35)

where

a. = CUPcos %* + a~. sin2 O. (36)

ak = a~P Cosg 0~ + a~n sin2 Om. (37)

In (36) and (37), 08 and fl~ are the angles between the

axis of the perturbing object and the impressed electric

and magnetic fields, respectively. The terms a.P, a~fi,

a~~, and a~n are the scalar polarizabilities, with CWPand

a~P taken parallel to the axis of the perturbing object,

and a~P and a~n taken normal to that axis.

COMPARISON WITH SLATER RESONANT THEORY

Maier and Slater [2] derived formulas that show

resonant frequency change resulting from the use of

conducting oblate and prolate spheroids as perturbing

objects. These formulas show this frequency change as

a function of the size and shape of each of these objects

for electric and magnetic fields parallel to and normal

to its axis. Maier and Slater also provide a set of curves

calculated from these formulas. Each curve shows how

the frequency change varies with shape of the spheroid,

when it perturbs either the electric or magnetic field

either parallel to, or normal to, the spheroid axis.

Ginzton [12] repeats both the formulas and curves of

Maier and Slater.

Using the formulas presented previously, one can cal-

culate the change in reflection coefficient that results

when a conducting oblate or prolate spheroid is used as

a perturbing object in the nonresonant technique. For

any combination of electric or magnetic fields, at the

point of perturbation, one can make this calculation in

either of two ways. First, one can calculate directly

using (16). The other, and much easier way, is to use

(35), (36), (37) and for the polarizabilities a,p, a,., a~P,

and amn to use the polarizability formulas given by

Collin [11]. Either way one finds that the quantity

(I’p – 17.) for the nonresonant technique varies linearly

with the quantity

~oz — ~z

002

for the Slater resonant technique, with changes in the

size and shape of the perturbing object, and changes in

the directions and magnitudes of the electric and mag-

netic fields at the point of perturbation. This, of course,

is to be expected. As a result, the Maier and Slater

curves for conducting oblate and prolate spheroids apply

equally well to the nonresonant perturbation technique.

Note: The experimental applications of this author’s

theory are discussed in the Correspondence section of

this issue by K. B. Mallory and R. H. Miller, “On ~on-

resonant Perturbation Measurements, ”
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